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INTRODUCTION 

OK, I confess: I have never liked time and distance analyses.  Perhaps the unpredictability of humans scares 

me more than the variability of physical phenomena like friction and force.  The prospect of having to pick 

one or two values for each of the many variables in a typical time/distance crash makes me want to run and 

hide.  I think I’ve turned a corner though, and am starting to like time/distance analyses. What changed? 

The tools I’m using.  I have finally tried using Monte Carlo Analysis (MCA) for a time/distance case.  This 

is a probability analysis technique first used to great effect by scientists working on the Manhattan Project, 

who had access to the newly created ENIAC computer.  Since then the technique has found wide 

acceptance with folks involved with risk assessment, financial decisions, meteorology, nuclear engineering, 

traffic flow, project scheduling, failure prediction, chemical processes, and others.  Now its gone to work 

for me, and it can go to work for you, too. 

 

Through the computing power currently available with even a modest personal computer, it is now possible 

to evaluate virtually all the possible combinations of all the variables from A to Z for many crashes in such 

a way as to allow the determination of a result to a specific level of confidence.  Having a scientific 

foundation for the confidence limits for our results is becoming more and more important as judges look to 

Daubert’s “Reliability Standard” in determining who gets to testify in today’s courtrooms.  There are other 

means of quantifying certainty, or “confidence limits,” but MCA is now my favorite for any analysis that I 

can conduct as a series of closed-form equations in Excel.  Put another way, if I can solve the case by hand-

methods with a pencil and a calculator, then I can put it in Excel, and I can use MCA. 

 

After a brief introduction to MCA and a literature review, including a 2003 SAE paper I wrote on how to 

run MCA in Excel, this article will build on that original paper by working out a momentum-based analysis 

for a full intersection collision case study.  The case examined involved a 90-degree intersection, one 

speeding motorist, and one motorist who ignored a stop sign.  Pre-crash event data was recovered from the 

airbag control module of one vehicle, providing information on its incoming speed and delta-V, which were 

incorporated into the analysis.  This article will include only a rudimentary discussion of statistics, and the 

reader is directed to the cited references for further information, any including statistics primer or my 2003 

SAE paper which specifically described the steps necessary to implement a Monte Carlo Analysis using a 

spreadsheet program. 

 

LITERATURE REVIEW 

The notion of Monte Carlo Analysis dates back more than 100 years but was quite limited until the advent 

of current computers.  There are a variety of decades-old books either dedicated to MCA [Hammersly & 

Handscomb 1964] or which discuss the technique [Schlaifer, 1969] and more recent textbooks on the topic 

[Fishman 2003, Christian & Casella 2004], but none that specifically address its application to accident 

reconstruction.  

 

The earliest papers specifically describing the use of MCA for crash reconstruction that I have found are a 

pair of 1994 SAE papers from Wood & O'Riordain [1994] and Kost & Werner [1994].  Several 

contemporary papers and some earlier ones discussed various techniques for uncertainty analysis.  They 

primarily approached the issue from a mathematical standpoint, and were not directly relevant to MCA, 

though MCA is clearly a viable means of assessing the uncertainty in an analysis, and may be considered 

related [Slakov & MacInnis 1991; Neiderer 1991, Brach 1994, Tubergen 1995, Bartlett and Fonda 2003, 

Fonda 2004]. 
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Wood & O'Riordain [1994] discussed using MCA with an “in house simulation package” to evaluate 

vehicle avoidance maneuvers prior to an intersection crash.  Though their paper does not provide the actual 

code utilized, it appears that their program was essentially an automated form of the closed-form analysis 

commonly performed by hand for momentum and time and distance analyses, incorporating some post-

impact rotation analysis.  Their case study included ranges for a number of variables, but other than one 

reference for the brake rise time, no specific citations were provided which could assist with selecting 

appropriate ranges or distribution types for other analyses.  The paper discussed using logic tests to discard 

or accept each run, which they called “Redundancy.”  This is based on the idea that one can quite often 

place some ranges on one or another result, either based on physical impossibility, geometry, known vehicle 

dynamics, or witness statements.  These limits can allow us to discard calculated results which do not fit our 

known true result.  For instance, we can immediately discard any sets of data calculated using friction 

values less than zero.  Another example might be that in right-angle intersection crashes with significant 

central engagement between the two vehicles, we can usually assert with confidence that the departure 

speeds for the two vehicles should be similar, so one could discard all results where they differ by some 

selected value, say 4 or 6mph, as being inconsistent with the crash under consideration.  If it is known that 

one car is moving slowly across another’s path, but the direction of motion is known to be to the left, for 

instance, all cases where the analysis indicates it was going to the right can be discarded.  Wood & 

O’Riordan selected the following four limits for their intersection crash: Vehicle 1 had to depart faster than 

Vehicle 2; the departure speeds had to be within 3.5mph of each other; vehicle closing speeds had to be 

between 45 and 99 kph (based on crush damage); and the pre-crash corning acceleration for one vehicle had 

to be less than 0.55g based on scene evidence.  Using these limits, they selected very wide input ranges 

(0.7<f<1.05, for one vehicle’s deceleration, for instance), but discarded 99.4% of the results as generating 

results outside their limitation ranges.  The results for each variable of interest for the remaining 1591 cases 

formed what I would call “good looking” or “filled in” bell curves with no significant gaps.  Though no 

statistical analysis was presented, they noted that they re-ran the analysis until the overall average results 

“stopped changing.”  

 

Kost & Werner [1994] described using the Crystal Ball software package, which is an Excel add-on 

package, to evaluate a vehicle’s initial speed based on the energy dissipated during the crash.  They 

describe three common probability distributions (normal, triangular, and rectangular, aka uniform or even), 

but provide no guidance on selecting appropriate values for the ranges.  Crystal Ball is still available, 

currently costing something over US$1,000, depending on which package one purchases. 

[http://www.crystalball.com/] 

 

Since those early expositions, there have been a number of papers which described the technique’s 

foundation, attributes, and applications to reconstruction. Moser et al [2003] discussed a Monte Carlo-style 

parameter variation application in PC-Crash. Kimbrough [2004] described the use of MCA to analyze a 

passing-situation which lead to a crash, but not the mechanics of the technique. Moser et al described the 

use of MCA to evaluate incoming vehicle speeds, and analyzed one test-crash. They used the term 

“Conditional Sampling” to describe the selective discarding of unreasonable results called “Redundancy” 

by Wood & O’Riordain. Ball et al [2007] used the Crystal Ball add-on and discussed the effect of 

distribution selection on results. 

 

In addition to Crystal Ball (mentioned above), there are other Excel-add-on packages available, including 

RiskAmp (http://riskamp.com/) which costs approximately $250 as of this writing for the Professional 

version.  This version includes Latin Hypercube sampling (LHS) capability for some distribution types 

which can significantly reduce the number of calculations required for a Monte Carlo Analysis.  For 

simplicity, though that technique will not be utilized for this paper. RiskAmp has a 30-day trial available.  

Playing with it for a while I've learned several things: (1) With occasional HELP FILE reference, I was up 

and running in about 15 minutes, so it's pretty simple; (2) It's REALLY cool to watch it dynamically run an 

analysis (Visit http://mfes.com/MonteCarlo.html to see a little AVI screen capture of the package doing a 

skid-to-stop analysis with two normally-distributed variables); (3) It has loads of distribution choices and it 

http://mfes.com/MonteCarlo.html
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seems to be only slightly slower than Excel alone for recalculations; (4) It does NOT easily allow the 

conditional sampling described below, which turns out to be a deal-breaker for me. 

 

In my 2003 SAE paper [Bartlett 2003] I described the specific steps necessary to set up a Monte Carlo 

analysis in Excel, including some of the “shortcut” keys and functions which made operating in Excel 

simpler, however that paper did not include a complete collision example.   

 

STATISTICS REFRESHER 

Many naturally occurring phenomena (say height of adult male humans, or length of year-old crocodiles) 

have some middling-“most likely” value at or near which most of the examples occur.  The frequency of 

examples that are different from the mean becomes less frequent the further from the mean we get, either 

higher or lower.  Said another way, we’re more likely to find examples nearer the middle “typical” value 

than we are to find values very different from it.  This is shown graphically in the “bell curve” so often used 

in schools” Most students’ grades are near “average”, while only a few perform much higher, and only a 

few perform much lower.   

 

For this paper, I’ll skip most of the normal distribution mathematical discussion, but it is worth noting that 

the two key values are the mean (or average) value, which is the middle “high spot” on the bell curve, and 

the “Standard Deviation” (SD) which defines how “spread out” the curve is.  In a normally distributed 

population or data set, the measured values fall within one standard deviation of the mean value  (Avg–SD 

to Avg.+SD) 68.3% of the time, (34.1% of all values on either side of the middle) as shown in Figure 1.  

About 95.5% of all cases fall within 2 standard deviations of the mean, and 99.7% will be within 3 standard 

deviations.  The two “tails” above and below 3 standard deviations from the mean comprise 0.15% of all 

cases. 

      
 

 

Figure 2: An example of a 

randomly selected normally-

distributed data set having a mean 

value of 0.76 and a standard 

deviation (SD) of 0.06.  We’ll see 

these values again later. 

Figure 1: Showing a normal distribution 

(mean=0, SD=1) and the percentage of 

cases in each standard deviation segment  
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Normal distributions have no absolute upper or lower bound, so theoretically there may be values far from 

those near the middle.  Sometimes these highly unlikely values are physically impossible, such as negative 

friction values.  For this reason, I quite often place limits on my normally distributed values as appropriate.  

 

A second type of distribution commonly encountered in accident reconstruction analyses is the uniform or 

“rectangular” distribution, also sometimes called an “even” distribution.  This type can be used in the 

absence of evidence to suggest that the value is more likely to be near the center of the range. This 

distribution is more conservative than a normal distribution, as it gives equal probability to all values in the 

specified range. At the same time, it absolutely precludes values outside the specified range, so the 

bounding minimum and maximum terms must be selected with great care so as to not exclude possible 

values. The standard deviation for this type of distribution is equal to [a / SQRT(3)]. The range within one 

SD of the mean includes 57.74% of all values. [Montgomery & Runger 1999]   

 

The third commonly used type of distribution would be a triangular distribution. This type offers the highest 

probability to a middle-value, with linearly decreasing probability as you move away from that middle 

value, and concrete minimum and maximum values. This type of distribution incorporates the analyst’s 

BEST VALUE as the most likely, but still allows a range of values, with decreasing probability as you get 

away from the middle. Triangular distributions are available in all commercial Excel Add-on MCA 

packages, but to my knowledge it is not inherently available in Excel itself. You can code it yourself, 

though, with relative ease. The equation for a symmetric distribution is shown at this website: 

www.sics.se/~ali/teaching/sysmod/e05.pdf.  An implementation of this in Excel using the random number 

generator gives the distribution curve shown in Figure 3A below.  One assymetric triangular distribution is 

provided by this online article: http://mgtclass.mgt.unm.edu/Jurkat/Mgt%20532/DistributionsInSim.doc, 

with its implementation shown in Figure 3B.   

 

    
Figures 3A, 3B: Implementing two triangular probability distributions, one symmetric, one not. 

 

There are numerous other types of distributions, some symmetric (such as three of the above four), others 

asymmetric (such as the assymetric triangular discussed, or the Chi or Pareto functions). Some have an 

appearance similar to the normal distribution (such as Cauchy-Lorentz and Student’s t function), while 

others are very different (such as the Laplace or Double-Wiebull). With the mathematical formula 

describing the function in hand, most of these could be coded into Excel. Fifty Six different distributions 

are provided in this online brochure for the REGRESS+ software package: [McLaughlin 2001]. These 

could each be implemented in Excel, but not without some effort. 

 

There are numerous other types of distributions, some symmetric (as the three discussed above are), others 

asymmetric, such as the Chi or Pareto functions.  Some have an appearance similar to the normal 

distribution (such as Cauchy-Lorentz and Student’s t function), while others are very different (such as the 

http://www.sics.se/~ali/teaching/sysmod/e05.pdf
http://mgtclass.mgt.unm.edu/Jurkat/Mgt%20532/DistributionsInSim.doc
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Laplace or Double-Wiebull).  With the mathematical formula describing the function in hand, most of these 

could be coded into Excel.  Fifty Six different distributions are provided in this online brochure for the 

REGRESS+ software package: http://www.causascientia.org/math_stat/Dists/Compendium.pdf 

[McLaughlin 2001]   

 

In addition to Crystal Ball (mentioned above), there are other Excel-add-on packages available, including 

RiskAmp (http://riskamp.com/) which costs approximately $250 as of this writing for the Pro version which 

includes Latin Hypercube sampling (LHS) capability for some distribution types.  Though LHS can 

significantly reduce the number of calculations required for a Monte Carlo Analysis, it will not be utilized 

for this paper.  RiskAmp has a 30-day trial available.  Playing with it for a while I've learned several things: 

(1) With occasional HELP file reference, I was up and running in about 15 minutes, so it's pretty simple; (2) 

It's REALLY cool to watch it dynamically run an analysis (visit mfes.com/MonteCarlo.html to view a short 

AVI video screen-capture of the package doing a skid-to-stop analysis with two normally-distributed 

variables); (3) It has loads of distribution choices and it seems to be only slightly slower than Excel alone 

for recalculations; (4) It does NOT easily allow the conditional sampling described below, which turns out 

to be a deal-breaker for me. 

 

I generally use whichever probability distribution type fits the available data best.  Regardless of which 

types or combinations one selects for their variables though, calculations incorporating multiple 

independent variables tend to form normally distributed results.  This phenomenon is described by the 

Central Limit Theorem which is described in more detail in all statistics texts and numerous online sources.  

The analyst should remember, though, that selectively discarding portions of one result may make a 

normal-result assumption improper, requiring more careful evaluation of the results to determine 

probability ranges. 

 

INTRODUCTION TO MONTE CARLO ANALYSIS 

The basic idea behind MCA is that if we know the range in which our input variables fall, we can randomly 

select a possible value for each variable from that range and run the analysis to get a result.  Doing this a 

few times will only yield a few potential results, and essentially nothing useful.  If we repeat this process 

often enough, though, say thousands or tens of thousands of times, the collection of results provides insight 

into the full range of what may possibly have transpired prior to or during the event under analysis.  We can 

use this collection of results to assess not only the minimum, maximum, and average values, but also what 

range constitutes the “most likely” (the middle 51%), or perhaps the range that constitutes a 95% or 99% 

confidence level.  A simple example follows.   

 

Say we wish to evaluate a vehicle’s speed at the start of a nominally 70-foot long skid on dry pavement.  

Based on a review of hundreds of skid tests summarized at this webpage: mfes.com/friction.html, I might 

select a normal distribution (a “bell curve”) with an average value of 0.76g and a standard deviation (SD) of 

0.06g (written for this article as 0.76±0.06g).  This means that 95% of all cases will fall between 0.64g and 

0.88g, and 99% will be between 0.58g and 0.94g.  I was a co-author on a 2002 SAE paper on research into 

the ranges inherent to many measurements common to reconstruction [Bartlett, et al 2002]. A review of that 

paper shows that the standard deviation for measurement of a skidmark was found to be approximately 1.7 

feet.  Using Excel and the steps described in Bartlett [2003], ten random runs generate choppy results, as 

shown in Figures 4A and 4B for two successive runs of just 10 trials each.  In Figure 4A, for instance, we 

see that the 10 trials produced one occurrence each in three ranges (36 to 37mph, 40 to 41, and 43 to 

44mph), two results between 41 and 42mph, and 5 results between 42 and 43mph, while generating zero 

results in all other ranges.  Figure 4B shows similar uneven distribution. But once the spreadsheet is set up, 

the calculation can just as easily be performed a hundred times, shown in Figure 5, or 10,000 times, shown 

in Figure 6.  Normal curves for each run’s specific statistics are also shown in Figures 5 and 6.  The more 

trials one performs, the less variation there will be between runs, and the more “filled in” the normal curve 

appears.  For a simple two-variable calculation such as this, there may not be much additional benefit to be 

had beyond a few hundred trials.  For more complicated analyses, though, tens of thousands of runs may be 

required to get results to satisfactorily converge. 

http://www.causascientia.org/math_stat/Dists/Compendium.pdf
http://riskamp.com/
http://mfes.com/friction.html
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Figure 5: Extending the Monte Carlo 

results from Figures 4A & 4B to one run 

of 100 trials, with normal curve based 

on the results overlaid. Note that 

histogram is beginning to fill in the bell 

curve, but is still uneven in places. 

    
Figures 4A, 4B: Two individual runs of 10 speed calculation trials. Both figures were generated by  

using normal distributions for drag (mean=0.76, SD=0.06g) and distance (mean=70, SD=1.7ft),  

showing normal distributions based on each run’s resulting mean and standard deviation. 

 

 
 

 
 

The complete result set can then be cut-and-pasted (values only, not equations) into a separate worksheet 

for further analysis.  By sorting the results from low to high, they can be plotted as shown in Figure 7, 

which may be more informative on some levels than the histograms above.  This chart is essentially a form 

of the Cumulative Distribution Function.  The confidence ranges of interest can then be defined (50.1% and 

95% are shown), and either read off the chart, or picked out of the list.  From the chart (or table) the “more 

likely than not” speed from the skid described above would be 38.8 to 41.0mph.  The 95% confidence range 

would be 36.6 to 43.0mph.  Said another way, we can be 95% certain that the true speed was between 36.6 

and 43.0mph.  The Excel spreadsheet used to generate Figures 4 through 7 can be found online at 

http://mfes.com/montecarlo.html  

Figure 6: Extending the Monte 

Carlo analysis of the skid-to stop 

problem to 10,000 trials. 

http://mfes.com/montecarlo.html
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INTERSECTION CRASH ANALYSIS 

The crash analyzed here involved two passenger cars.  Vehicle 1 was a red late-model Chevrolet sedan with 

a lone occupant traveling north on a secondary road, and crossing a through-road at the edge of town.  

Vehicle 2 was a blue Toyota sedan with four teenage occupants which was traveling on the through-road in 

a 35mph zone.  Several witness statements indicated that the red Chevrolet (Vehicle 1) did not appear to 

react to the stopsign or intersection at all.  The Chevrolet entered the intersection and struck the blue Toyota 

(Vehicle 2) on the left side near the front left wheel.  Post impact, both vehicles rotated somewhat, coming 

to rest approximately 70 feet from the area of impact, near the edge of the pavement.  The Chevrolet’s 

wheels were all still free to rotate, but one Toyota wheel was crush locked, giving it a higher Rotation 

Factor.  Figure 8 shows the general crash scene diagram, and Tables 1 and 2 shows the value ranges used 

for the principle analysis variables. 

 

 
Figure 8: showing the scene diagram for the intersection crash in the primary example. 

 

Figure 7: Ordered results 

of skid-to-stop calculations 

from 10,000 trials shown 

in Figure 6, showing 

confidence ranges. 
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Table 1: Momentum Analysis Variables for Vehicle 1: 

Variable Low - High Nominal / St.Dev 
Distribution 

 Type 

Weight (pounds) 3357 - 3957  uniform 

Veh1 Post Impact Travel Distance (feet) 65 – 75   

Road Friction (g’s)  0.76 / 0.06g Normal 

Rotation Factor 0.6 – 0.7  Uniform 

Approach Angle (degrees) 0  Uniform 

Departure Angle (degrees) 45 – 55  Uniform 

 

Table 2: Momentum Analysis Variables for Vehicle 2: 

Variable High/Low Nominal / St.Dev 
Distribution 

Type 

Weight 3461/3861  Uniform 

Road Friction (g’s)  0.76 / 0.06g Normal 

Rotation Factor 0.81 – 0.91  Uniform 

Approach Angle (degrees) 74 – 78  Uniform 

Departure Angle (degrees) 35 – 45  Uniform 

 
Using the nominal values listed above, the nominal momentum solution can be performed.  The calculated 

Chevrolet’s incoming speed is 36.4mph, while the Toyota’s incoming speed is 49.2mph.  Since their total 

weights are essentially the same, they both experience approximately the same delta-V, calculated to be 

29mph.  The vector diagram for this solution using the nominal values is shown in Figure 9. (see 

www.mfes.com/colm_2005.pdf for more info on Conservation of Linear Momentum and vector diagrams). 

 

 
 

So far, there’s nothing new.  But how do we assess the “most likely” range?  We could use the traditional 

HIGH/LOW combined analysis technique, but the chances of getting all variables to line up like that are 

pretty slim.  Now I’ll turn to Monte Carlo Analysis: plugging in all those ranges in an excel spreadsheet as 

described above and in SAE 2003-01-0487.  The Chevrolet’s calculated incoming speed comes out to have 

a mean of 36.4mph with a standard deviation of 2.97mph, while the Toyota’s incoming speed is calculated 

to have a mean of 49.1mph and a standard deviation of 2.86mph, with the bell-curve of possible speeds as 

shown in Figure 10. 

Figure 9: The vector diagram 

of the nominal solution for 

the momentum analysis. 

(From the ARPro software 

package.) 

http://www.mfes.com/colm_2005.pdf
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Subsequently, the Chevrolet’s airbag control module was downloaded.  It showed the Chevrolet gently 

slowing (44-44-43-43-42mph) during the five seconds prior to the collision.  Due to uncertainties in speed 

and timing, I decided to only accept calculations which produced an incoming speed of 38 to 42mph.1  This 

incoming speed for the Chevrolet is within the range of our initial calculations, but it is near the higher end, 

as we would hope and expect due to the intrinsically conservative nature of COLM  analyses by virtue of 

neglecting external forces during the impact.  Additionally, the Chevrolet’s module recorded lateral and 

longitudinal delta-v, showing a total velocity change of at least 27.7mph.   Limiting our examination to only 

those results which met the two criteria recorded by the airbag control module, and which generated 

departure speeds within 4mph of one another, we get approximately 1300 accepted scenarios per 10,000 

trials.  Collecting the results of 6 runs generated just under 8,000 accepted trials, as shown in the histogram 

of Figure 11.  The conditionally sampled result set shows the range covering 95% of all cases for the 

Toyota’s incoming speed to be 42.9mph to 52.9mph, which is not only slightly lower but is somewhat 

“tighter” than the whole “unfiltered” data set.   

 

 
 

 

 

 
1 Despite the apparent simplicity of that dataset, airbag control module data is never that simple, and leaves room for 

uncertainty.  There have been numerous papers published through SAE, ITAI, NHTSA, and others on this topic, which 

is beyond the scope of this paper. 

Figure 10: Histogram 

showing all possible 

calculated speed results. 

Figure 11: Histogram showing 

results after “conditional 

sampling”: These include only 

cases where the calculated 

incoming Chevrolet speed was 

between 38 and 42mph, its 

change in velocity was more 

than 27.7mph, and the 

departure speeds for the two 

vehicles were within 4mph of 

each other. 
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With the speeds of the vehicles settled on, we can proceed with the part I have always liked the least: The 

time and distance analysis.  We will run a time and distance evaluation for each scenario or trial run that we 

accepted from the previous analysis.  We’ll start by determining the changes which would have resulted 

from the Toyota’s having been traveling at the speed limit at the time the Chevrolet crossed the stop-bar.  

Another group of variables must be defined for this stage of the analysis, shown in Table 3: 

 

Table 3: Showing data used for the time-and-distance portion of the analysis. 

Variable High/Low Nom./St.Dev 

Distribution 

Type 

V1 (Chevrolet) StopBar to  

Impact travel distance (feet) 
37 – 45  Uniform 

V1 Distance to clear impact (feet) 11 – 19  Uniform 

Assumed V2 speed (mph)  35 None 

 

For each trial already accepted, the distance for the Chevrolet to travel from the stop sign to the impact was 

selected from the range of possible values, and then using the travel speed calculated earlier and assuming 

that speed was constant, the time to impact was calculated.  Using the Toyota’s calculated speed for that 

run, its distance from the crash when the Chevrolet crossed the stop bar was calculated.  Next up, the time it 

would have taken the Toyota to cover that distance had they been traveling the speed limit of 35mph.  Then 

the extra time that would have afforded the Chevrolet to cross was calculated, and this was used with the 

Chevrolet’s speed and distance-to-clear to determine if the crash still occurs or if the Chevrolet clears the 

intersection in time for the Toyota to travel behind it.   

 

Using the nominal values, the wreck does NOT happen.  However, the Toyota’s slower speed and increased 

arrival time only allows about an extra 0.03 seconds of extra time. In other words, the Chevrolet only clears 

the Toyota by about 2 feet.   The time for the Chevrolet to cover the distance from the stopbar to the impact 

is so short that there would have been very little chance for the Toyota driver to have reacted in any 

meaningful way.  Running the Monte Carlo Analysis 100,000 times yielded 12,631 accepted trials, but 

since the Chevrolet’s speed was limited to values higher than the average of all runs, the result changes: 

Evaluating only the successful trials showed that 52.5% of the time, the crash DOES still happen even if the 

Toyota had been traveling at the speed limit.  In other words, the crash still happens more often than not.  

Of course, the “new” impact area is always further back on the Toyota’s side, and the overall severity (of 

the initial impact, at least) is reduced.  

 

If the situation had been such that the Toyota driver might have had time to react prior to the impact, her 

reaction to the event could have been incorporated, including reaction time, brake rise time, average pre-

crash deceleration, and even steering maneuvers if the analyst was ambitious and so inclined.  

 

CONCLUSION 

This paper outlined the basic premise of Monte Carlo Analysis as it applies to crash reconstruction, 

reviewed some of the literature on the topic, and provided a case study.  The case study showed how MCA 

can be applied to a complicated intersection crash utilizing ranges for all the major values in a momentum 

and time-and-distance analysis in order to assess actual likelihood that a speeding motorist’s speed affected 

the occurrence of a crash.  No other currently available tool that I know of combines MCA’s easy 

availability, analysis technique flexibility, and conditional sampling capability.  I expect I’ll be using it 

more and more often, and maybe some day I’ll even come to enjoy Time and Distance problems. 
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APPENDIX:  FURTHER EXCEL DISCUSSION 

Excel utilizes a pseudo-random number generator, rather than a more elegant quasi-random number 

generator.  This limitation is only pertinent if CPU time required for the calculations is of interest, and is 

only apparent for low trial numbers.  The limitations of the pseudo-generator can be overcome simply by 

performing more trials. 

 

Results of Excel’s InvNorm() function have been shown to begin to diverge from a true normal distribution 

at the extreme ends of the distribution tail [http://www.puc-rio.br/marco.ind/quasi_mc.html, referenced 

12/8/07].  This feature will be most important for analyses where the highly unlikely “tails” of the 

probability curve are of most interest, and will not meaningfully affect accident reconstruction analyses 

which are primarily concerned with the majority of the results (not the outliers). 

 

Microsoft has stated that the random number generation algorithm in pre-2003 versions of Excel did not 

perform well in "randomness" tests when run out to more than a million values.  Though this is not a 

significant issue with regard to this type of analysis, the newer editions ('03 and '07) have a more robust 

random number gneration algorithm which passes those tests.  More details can be found online at 

Microsoft’s website: [http://support.microsoft.com/kb/828795]. 


